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SUMMARY 

The paper deals with the linear stability analysis of laminar flow of a viscous fluid in a rotating porous 
medium in the form of an annulus bounded by two concentric circular impermeable cylinders. The 
usual no-slip condition is imposed at both the boundaries. The resulting sixth order boundary value, 
eigenvalue problem has been solved numerically for the small-gap case by the Runge-Kutta-Gill 
method, assuming that the marginal state is stationary. The results of computation reveal that the 
critical Taylor number increases with decreasing permeability of the medium. The problem is found to 
reduce to the case of ordinary viscous flow in the annulus obtained by Chandrasekhar,' when the 
permeability parameter tends to zero. 

KEY WORDS Flow in an Annulus Linear Stability Rotating Porous Medium Critical Taylor Number Runge- 
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1. INTRODUCTION 

Flows in configurations with cylindrical geometry are of importance in many engineering 
fields, such as electrical motors, lubrication and heat transfer equipment. The practical utility 
of such flows depends on a good knowledge of their stability. Ever since the publication of 
the pioneering work of Taylor,2 the rotational stability problems have attracted the attention 
of a large number of research workers. But to the authors' knowledge, most of them deal 
with pure viscous flows between rotating cylinders. In the present paper we investigate the 
linear stability of flow in a rotating porous medium in the form of an annulus bounded by 
two concentric circular impermeable cylinders. The flow through the porous medium is 
analysed by using the Brinkman3 model for the small-gap case under the assumption that the 
marginal state is stationary. The resulting sixth order boundary value, eigenvalue problem 
has been solved employing the Runge-Kutta-Gill method, making use of an iterative 
procedure given by Fox4 for correcting the starting values of the integration process. 
Numerical computations were carried out on a DEC-1090 system. 

2. BASIC FLOW 

We consider the viscous flow in a porous matrix in the form of an annulus bounded by two 
concentric circular impermeable cylinders of radii R1 and R2 ( > R J  (see Figure 1). The flow 
is caused by the rotation of the matrix with a constant angular velocity R. It is assumed that 
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SECTION x - x  t x  
Figure 1. Definition sketch 

the porous medium is such that rotation of the annulus will have no effect on its structure 
and permeability. 

The basic flow is obtained by using the Brinkman3 model: 

(1) 
d2V 1 d V  V V -+ 0 
dr2 r dr  r2 K 

_=- dP PV2 
dr  r 

The solution of (1) under the no-slip boundary conditions: 
V = R l f 2  at r = R ,  

is 

where 

and 

V = R 2 Q  at r = R 2  

11, K1 being the modified Bessel functions of order one of the first and second kinds, 
respectively. 

3. STABILITY ANALYSIS 

Using the usual normal mode technique' we obtain the perturbation equations in the form 

v K  (9) 

DD,- (10) k 2 - - - -  v = (D,V)u 
v K  'I 
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and the continuity equation as 

where 
D,u=-kw 

The associated boundary conditions are 

u = D u = u = O  at r = R ,  andat r = R 2  

From (5)-(8) we get after some simplication, 

where 
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(11) 

R ,  R2 q=- and u=- 
R2 J K  

Io, KO being the modified Bessel functions of zero order of the first and second kinds, 
respectively. 

Assuming the thickness of the porous matrix, that is R,- R,, to be small compared to the 
mean radius (R, + R2)/2, we approximate D ,  by D. Hence the equations (9) and (10) for the 
marginal stability case (on using (13)-(16)) take the form 

(17) 
2a2d2R 

[02 - a”- (1 - q)2u2](~2  - a”)u = [.lfI(5) -f2(01u 
V N l { r l +  (1 - df;) 

and 

(18) 
d2fl 
V N l  

[D” - a2 - (1 - d2u21u = - Lf&) + f4(l)lu 

Now using the transformation 

U’ 

in (17) and (18), and writing u in place of U’ we get 

2a2d2n uz- 
V 
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where 
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4f12d4 T=-- 
2 v 

d = R 2 - R 1  and a2=k2d2 (23) 

The boundary conditions (12) take the form 

(24) u = Du = v = 0 at <=  0 and at <= 1 

where now D stands for d/d<. 

4. NUMERICAL SOLUTION OF THE PROBLEM 

In order to obtain the numerical solution of the above problem we use the following 
transformations: 

u = Y1, DU = Y2, D'u = Y3, D3u = Y4, v = Y,, DV = Y6 (25) 

and write the equations (20), (21) and the boundary conditions (24) in the form 

Y ;  = Yz  
Y; = Y3 
Y;' Y4 

Y;  = Ys I 
Tu2 
2N1 

Yk = Ca2+a2(1- q)'IYg-- [f3(<)+f4(OIYi 

and 
Yl=O, Y2=0 ,  Y5=0 at .$=Oandat  < = 1  (27) 

We solve the problem described by (26) and (27) numerically by employing the Runge- 
Kutta-Gill method. The integration is to be carried out in [0,1]. To start the integration it is 
necessary to know the values of all six functions Yl, . . . , Y6 at 5 = 0. But only three of them, 
namely Yl ,  Y2 and Ys are known. So, it is necessary to suitably assume the remaining values 
Y3, Y4 and Y6. It is also necessary to assume the starting eigenvalue T. If the assumed values 
(starting values) happen to be correct, the computed values would satisfy the conditions at 
the second boundary, namely t; = 1. If this is not the case we have to  make corrections in the 
starting values. For this, we use a self-corrective procedure given by  FOX.^ This procedure 
involves the integration of three auxiliary initial value problems of the same magnitude as 
the original problem which again will be solved using the Runge-Kutta-Gill method. 

A program was written in Fortran for the Runge-Kutta-Gill method as given by Ralston 
and Wilf6 incorporating the corrective procedure. The starting values were computed from 
the series solution obtained by Chandrasekhar.' As a check on the program, the critical 
Taylor numbers obtained by Chandrasekhar' were obtained through the present numerical 
procedure by taking (T (the permeability parameter) very small. To avoid the vitiation of the 
results of computation through rounding error, double precision arithmetic was used. The 
convergence criterion used was that the magnitude of the difference between the computed 
eigenfunctions (velocity components) and their prescribed values at the outer boundary 
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remained less than or equal to lo-'. It was found that the critical Taylor number obtained 
underwent a change of about 0-03 per cent with no change in the computed values of the 
eigenfunctions when the step length of integration was reduced from 0-00125 to 0.000625. 
So, all integrations were carried out in [0,1] with the step length equal to 0.000625. The 
following illustration shows the magnitude of the computer work involved. With the starting 
values for the eigenfunctions and the eigenvalue T taken from Chandrasekhar'sl work, the 
entire process took five iterations to converge (for u = 10, a = 2-5), the CPU time required 
being 98 s on the DEC-1090 system. 

Table I. Results of computation 

(a) For q = 0.9 and LT = 6 
a u"(0) u'l'(o) Tc 

1.00 
2.00 
2.50 
3.00 
3.12 
3.25 
3.50 
4.00 
5.00 
6.00 
7.00 

(b) For q = 0.9 and IT = 8 
1.00 
2.00 
2.50 
2.75 
3.00 
3.12 
3.25 
3.50 
4.00 
5.00 
6.00 
7.00 

(c) For q = 0-9 and u = 10 

1.00 
1.75 
2-00 
2.50 
2.75 
3.00 
3.12 
3.15 
3.50 
3.75 
4-00 
5.00 
6.00 
7.00 

0.02280654 
0.02109343 
0.0 1977 162 
0.0 1820242 
0.01779912 
0.01735402 
0.01648116 
0.01471573 
0.01140578 
0.00869664 
0.00664080 

0.024467 5 3 
0.02317821 
0~02211211 
0.02147985 
0.02079139 
0.02044394 
0.02005704 
0.01 928844 
0.0 1769699 
0.01459154 
0.01193420 
0.00984285 

0.02736930 
0.02713518 
0.02698582 
0.02655898 
0.02628387 
0.02597435 
0.02581598 
0.02577558 
0.02528856 
0-02493555 
0.02459344 
0.02362165 
0.02407296 
0.02787159 

-0.1145977 1 
-0.1 1607983 
-0.11556218 
-0.11366216 
-0.11298636 
-0.11216019 
-0.11030869 
-0.10569583 
-0.09414453 
-0.08183139 
-0.07049294 

-0.12177304 
-0.12601601 
-0.12746434 
-0.12778709 
-0- 12779047 
-0-12767329 
-0.12745858 
-0.12679319 
-0.12454232 
-0.1 1739002 
-0.10882729 
-0.10065290 

-0.13440704 
-0-14147091 
-0.14428807 
-0.15021769 
-0.15322803 
-0.15622752 
-0.15766077 
-0.1580 1853 
-0.16219029 
-0.16520485 
-0.16831015 
-0.18344679 
-0.21017147 
-0.27048229 

6462 
2386 
1988 
1859 
1854 
1856 
1885 
2025 
2605 
3617 
5152 

6936 
2544 
2112 
2014 
1966 
1958 
1959 
1985 
2121 
2699 
3699 
5 192 

7543 
3201 
2742 
2263 
2151 
2093 
2081 
2080 
2098 
2148 
2225 
2782 
3738 
5141 
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Tc 

t 

Figure 2. Dependence of T, on cr (for a = 3.12 and q = 0.9) 

5.  DISCUSSION OF RESULTS 

The eigenfunctions D2u, D3u and the critical Taylor number T, are computed for some 
combinations of the parameters u and a and are given in Table I. The dependence of T, on 
c is presented in Figure 2 which shows that T, increases with u. This is physically justified 
because an increase in a means a decrease in permeability, which in turn means the presence 
of more solid particles than liquid particles in the annular region. The effect of this is to 
increase the resistance to the flow making the system more stable. We also find that the 
critical Taylor number obtained by Chandrasekhar’ (for ordinary viscous flow case) is 
obtained in the limit as u tends to zero. The marginal stability curves are sketched in Figure 
3 for different a which shows that the critical value of a increases slightly with increasing u. 
The eigenfunctions u, u, w presented in Figures 4, 5 and 6 can be seen to be larger than the 
corresponding ones for the ordinary viscous flow. 
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LIST OF SYMBOLS 

Cylindrical co-ordinates 
Disturbance velocity components 
Basic flow velocity 
Radius of the inner cylinder 
Radius of the outer cylinder 

Ratio of the radii of the cylinders 

Angular velocity 
Density of the fluid 
Coefficient of viscosity 

Kinematic viscosity 

Pressure 
Permeability of the porous material 

Non-dimensional permeability parameter 
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